SYNTHESIS VIA OXAZOLINES. VI. AN ASYMMETRIC SYNTHESIS OF β-HYDROXY AND β-METHOXY ALKANOIC ACIDS

A. I. Meyers* and Gerald Knaus

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521

(Received in USA 6 February 1974; received in UK for publication 25 February 1974)

The recently reported asymmetric synthesis of α -methyl alkanoic acids utilizing chiral non-racemic oxazolines¹ has prompted further studies in an effort to evaluate their full synthetic potential. The 2-methyl oxazoline $\underline{1}^2$ was readily obtained from commercially available 15,25-(+)-1-phenyl-2-amino-1,3-propane diol $\underline{6}^3$ and the ethyl imidate hydrochloride of acetonitrile⁴ by stirring in dichloromethane (0°, 6h), followed by ether formation using sodium hydride-methyl iodide. Treatment of $\underline{1}$ with 1.0 equiv of n-butyllithium (THF, -78°) produced, after a few minutes, a yellow suspension, which is presumed to be the lithio salt $\underline{2}$.¹ Addition of a series of aldehydes gave rapid and efficient alkylated oxazoline adducts $\underline{3}$ which were either quenched in water to the hydroxyalkyl oxazoline $\underline{4a}$ or treated with methyl iodide in hexamethyl phosphoramide prior to aqueous quenching to produce the methoxy derivatives $\underline{4b}$. In either case, the alkylation yields were very high (Table 1). Aqueous acidic hydrolysis (3N HCl, 2-4 h, 95°) of the crude oxazolines gave the β -hydroxy acids $\underline{5a}$ or the β -methoxy acids $\underline{5b}$ respectively in 31-87% overall yields. As in the earlier study,¹ the amino alcohol $\underline{6}$ was recovered completely active and may be recycled to the starting material (-) $\underline{1}$.

Although there have been a variety of studies in which chiral esters and bromoesters have been employed to prepare β -hydroxy acids and esters, these have only been performed successfully on <u>phenyl</u> ketones and benzaldehydes.⁵ In fact, the only study which included aliphatic aldehydes resulted in virtually racemic β -hydroxy acids using menthyl esters of α -bromoacetic acid.⁶ When

1333

the oxazoline <u>1</u> was treated with benzaldehyde, the alkylation proceeded to <u>4a</u> (R=Ph, X=H) in high yield, however, the acidic hydrolysis resulted in dehydration to cinnamic acid. Similarly, the methoxy oxazoline <u>4b</u> (R=Ph, X=Me) gave only cinnamic acid upon acidic treatment. Thus, the present technique precludes the use of benzaldehydes (or phenyl ketones) as a route to β -aryl- β hydroxy acids due to their facile dehydration during the acidic hydrolysis.

Of the chiral acids $\underline{5a}$ and $\underline{5b}$ prepared, only the butanoic acid ($\underline{5a}$, $\underline{5b}$ R=Me) has been reported.⁷ It was felt that the use of a chiral shift reagent would provide the enantiomeric excess of the hydroxy acids prepared. A survey of a variety of commercially available shift reagents failed to resolve the hydroxy acids to any meaningful degree. On the other hand, the methoxy acids responded clearly to "Eu-Optishift II" (Table 1, footnote d) and cleanly separated the OMe singlet into two distinct peaks. From this it was feasible to determine the percent enantiomeric excess (18-25%). This determination was rendered valid by also preparing the racemic methoxy acids (using an achiral oxazoline⁸) and observing virtually equal peaks for the OMe group. Since the asymmetric center in <u>3</u> would not be expected to be involved in the

	<u>β-</u> Ͱ	β-Hydroxy Acids ^a			<u>B-Methoxy Acids</u> a		
R-CHO	% <u>4a</u>	% <u>5a</u>	[α] ²⁵ 589(c, CHC1 ₃)	% <u>4ь</u>	% <u>5ь</u>	[¤] ²⁵ 589(c,CHC1 ₃)	% enantio-d meric excess
Me	92	40	-8.4°(5.0)	88	31	-1.02(neat)	20±2
Et	78	44	-6.6°(11.1)	82	62	-0.89(15.8)	18±2
t-Bu	99	87 ^b	-11.6°(12.3)	99	77 ^C	-4.3(14.5) -5.0(neat)	25±2
n-Hex	88	54 ^e	+3.3°(12.9)				
Cyclohexyl	99	48	-2.4°(15.2)				
Ph	99	99 82(cinnamic acid)			79(cii	nnamic acid)	

Table 1. Reaction of Aldehydes with (-)-]

a) Distilled to dryness to avoid enantiomeric enrichment; b) mp 82°-84°; c) Contained 5-6% α , β -unsaturated acid; d) Determined in CDCl₃ using Eu-Optishift II (<u>tris-[</u>3-(heptafluoropropyl-hydroxymethylene)-d-camphorato]europium III; purchased from Willow Brook Laboratories, P. O. Box 526, Waukesha, Wisconsin 53186; e) mp 58°-59°.

methylation to <u>4b</u>, it is safe to assume that the β -hydroxy acids are also formed in 18-25% enantiomeric excess. The inherent reliability of enantiomeric composition using the shift reagents suggests that the reported value of -11.6° for 3-methoxybutanoic acid (-1.02° observed in this study) is probably too high.⁷ Several ketones (2-butanone and acetyl cyclohexane) were also examined in the reaction with (-)<u>1</u>. The β -hydroxy acid derived from 2-butanone was essentially racemic ([α] = +0.05°) while the acetyl cyclohexane gave, upon hydrolysis, the racemic lactone <u>7</u>.⁹ The latter undoubtedly arose from a methyl shift during the acidic hydrolysis in a non-stereoselective manner. Additional synthetic studies involving the chiral oxazolines are presented in the accompanying letters.

<u>Acknowledgment</u> The authors are grateful to the National Institutes of Health, the National Science Foundation, and the Petroleum Research Fund for financial aid.

REFERENCES

1. A. I. Meyers, G. Knaus, and K. Kamata, <u>J</u>. <u>Amer</u>. <u>Chem</u>. <u>Soc</u>., <u>96</u>, 268 (1974).

2. Bp 79-82° (0.05 mm), $[\alpha]_D^{25}$ -113.8° (c 10.5, CHC1₃).

- 3. Strem Chemicals, Inc., 150 Andover Street, Danvers, Massachusetts.
- 4. Organic Synthesis I, 5, John Wiley and Sons (1941).
- For a survey of these results see J. D. Morrison and H. S. Mosher, "Asymmetric Organic Reactions", Prentice-Hall, Englewood Cliffs, N. J., 1971 pp 142-152; E. B. Dongala, D. L. Dull, C. Mioskowski, and G. Solladic, <u>Tetrahedron Letters</u>, 4983 (1973); Y. Kudo, M. Iwasawa, M. Kobayashi, and V. Senda, ibid., 2125 (1972).
- 6. M. N. Palmer and J. A. Reid, <u>J. Chem.</u> Soc., 1762 (1962). In the example using cyclohexane carboxaldehyde, the corresponding β -hydroxy acid was obtained with $[\alpha]_D$ -1.20° (c, 5.7 EtOH).
- P. A. Levene and R. E. Marker, <u>J. Biol. Chem.</u>, <u>102</u>, 297 (1933) report 3-hydroxy butanoic acid [α]_D -24.0° (H₂O) and 3-methoxy butanoic acid [α]_D -11.6° (neat).
- 8. A. I. Meyers and D. L. Temple, J. Amer. Chem. Soc., 92, 6644 (1970).
- 9. 0i1, 71%, ir (film) 1740 cm⁻¹, nmr (CDCl₃) δ 2.87-2.13 (m, 3), 2.00-0.80 (m, 10), 1.07 (d, J=6.8 Hz, 3). Anal. Calcd. for C₁₀H₁₆O₂: C, 71.39; H, 9.59. Found: C, 71.60; H, 9.60.